A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins.
نویسندگان
چکیده
In proteins, functional divergence involves mutations that modify structure and dynamics. Here we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a GFP class frequently employed in superresolution microscopy. Their chain flexibility was analyzed using molecular dynamics and perturbation response scanning. The green-to-red photoconvertible phenotype appears to have arisen from a common green ancestor by migration of a knob-like anchoring region away from the active site diagonally across the β barrel fold. The allosterically coupled mutational sites provide active site conformational mobility via epistasis. We propose that light-induced chromophore twisting is enhanced in a reverse-protonated subpopulation, activating internal acid-base chemistry and backbone cleavage to enlarge the chromophore. Dynamics-driven hinge migration may represent a more general platform for the evolution of novel enzyme activities.
منابع مشابه
Green to red photoconversion of GFP for protein tracking in vivo
A variety of fluorescent proteins have been identified that undergo shifts in spectral emission properties over time or once they are irradiated by ultraviolet or blue light. Such proteins are finding application in following the dynamics of particular proteins or labelled organelles within the cell. However, before genes encoding these fluorescent proteins were available, many proteins have al...
متن کاملA New Reporter Gene Technology: Opportunities and Perspectives
The paper summarizes the current status of the reporter gene technology and their basics. Reporter gene technology is widely used to monitor cellular events associated with gene expression and signal transduction. Based upon the splicing of transcriptional control elements to a variety of reporter genes, it “reports” the effects of a cascade of signaling events on gene expression inside cells. ...
متن کاملPhotoconvertible Fluorescent Proteins and the Role of Dynamics in Protein Evolution
Photoconvertible fluorescent proteins (pcFPs) constitute a large group of fluorescent proteins related to green fluorescent protein (GFP) that, when exposed to blue light, bear the capability of irreversibly switching their emission color from green to red. Not surprisingly, this fascinating class of FPs has found numerous applications, in particular for the visualization of biological processe...
متن کاملAcid-base catalysis and crystal structures of a least evolved ancestral GFP-like protein undergoing green-to-red photoconversion.
In green-to-red photoconvertible fluorescent proteins, a three-ring chromophore is generated by the light-activated incorporation of a histidine residue into the conjugated π-system. We have determined the pH-rate profile and high- and low-pH X-ray structures of a least evolved ancestor (LEA) protein constructed in the laboratory based on statistical sequence analysis. LEA incorporates the mini...
متن کاملPhotoconversion of matrix targeted GFP enables analysis of continuity and intermixing of the mitochondrial lumen.
We establish photoconversion of green fluorescent protein (GFP) as an optical 'highlighter' to investigate the continuity of the mitochondrial matrix in living budding yeast (Saccharomyces cerevisiae). Photoconversion of GFP resulting in a marked shift of the absorption and emission spectra to longer wavelengths is elicited, under low oxygen conditions, by irradiation with blue light. Photoconv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Structure
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2015